skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nugent, G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This research focused on documenting student computer science (CS) interest, value, and self-efficacy across K-8 grade levels. It also examined differences between various student subgroups. The research questions were: Are there differences in K-8 students’ ratings of CS interest, task value, and self-efficacy? How does interest, task value, and self-efficacy change across grades K-8? Are there differential effects depending on student gender, ethnicity, and locale (rural/urban)? Results showed a continuing decline in the three student outcomes across grades, mirroring the larger body of STEM research. Students’ perception of the value of computer science was significantly higher than their interest, which in turn was higher than their self-efficacy. This result suggests that student recognize the importance of CS and find it fun, but not easy. Moderation results showed no gender differences at the elementary level, but significantly higher middle school results for males on CS interest and self-efficacy. Ethnicity findings tended to favor majority (white) students, with the exception that grade 6 – 8 minority students had significantly higher interest ratings. Urban students had significantly higher results for all three outcomes at grades K-3 and 6 -8. The research extends research documenting the decrease of adolescent student STEM interest by focusing specifically on computer science and including results at the elementary level. 
    more » « less
  2. Marks, G. H.; Schmidt-Crawford, D. (Ed.)
    The growing interest in offering computer science (CS) in public schools has illuminated the need for more trained K-8 educators. This paper provides initial evidence that carefully structured professional development (PD) that focuses both on CS skills/concepts and pedagogy can successfully impact teacher outcomes. Testing before and after the summer PD showed significant increases in teachers’ knowledge of CS concepts and computational thinking, as well as confidence in their CS skills and pedagogy. The only moderating effect was for rural versus urban differences in CS confidence. 
    more » « less
  3. Electronic textiles, especially those that can be worn (wearable textiles) are gaining traction within the P12 education community. The technology provides hands-on learning that is both exciting and personally relevant, especially for females, who have historically responded positively to aesthetics and textile design. A number of studies have examined the potential of wearable technologies in education, but they generally use small samples, mostly engage secondary school students and are carried out in either formal or informal settings. In contrast, this study utilized a large sample of elementary students and involved both in-and out-of-school learning contexts led by formal and informal educators. The present study used a quasi-experimental, pre-post design with two groups (treatment and control) to measure the impact of a wearable technology intervention on students’ (a) knowledge of circuitry, programming, and engineering design and (b) self-efficacy in making a wearable e-textile product. The three-level multilevel (i.e., children nested within teachers which were nested within schools) ANCOVAs were estimated for each outcome of interest (knowledge of circuitry, programming, engineering design, engineering self-efficacy, and programming self-efficacy). Results indicate that wearable technology’s integration of engineering, computing, and aesthetics promises to be an excellent interdisciplinary context to support students’ STEM learning and attitudes at the upper elementary level. However, differential results between males and females underscore the need to infuse gender-appropriate pedagogical practices to ensure that females develop the needed self-confidence to successfully complete tasks involving these two skill areas. 
    more » « less